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Noyori’s Ts-DPEN ligand bearing an amino sulfonamide moiety and with a primary amino group on a chi-
ral scaffold was found to be a simple and efficient bifunctional organocatalyst for the asymmetric Michael
addition of 1,3-dicarbonyl compounds to nitroolefins, which gave highly functional Michael adduct with
quaternary stereocenters in good enantioselectivities (up to 84%ee) and dr (up to 5.7:1 dr).

� 2008 Published by Elsevier Ltd.
Chiral bifunctional catalysts have attracted growing attention in
the past decades.1 It is considered that by imitating nature, the
principle of bifunctional catalysis could offer many advantages.2

Catalysts that contain two reaction partners in close proximity
and with the correct relative geometry could activate and facilitate
both reagent and substrate in a controlled environment or, alterna-
tively, one reactive center could be used to bind to the substrate,
whilst the second active site performs the chemical transforma-
tion.3 Such synergistic cooperation or dual activation between
two functionalities would be similar to enzymatic catalysis. Aspir-
ing to imitate enzymatic synergistic cooperation of multicenters,
chemists have succeeded in designing and developing many kinds
of bifunctional and multifunctional catalysts for asymmetric syn-
thesis, such as CBS reduction, aminoalcohol-mediated addition of
dialkylzinc, Shibasaki’s hetero- and homobimetallic catalysts, Jac-
obsen’s metal–salen complexes, and Trost’s chiral semiazacrown
Zn complex.4 Since the pioneering works in 2000,5 impressive pro-
gress has been made recently in the development of bifunctional
organocatalysis for organic synthesis.6 And pyrrolidine- and imi-
dazoline-type catalysts with secondary amines are widely used
organocatalysts in the past years, in which the asymmetric enam-
ine catalysis of ketone or aldehyde has been commonly accepted.7

By comparison, chiral primary amine-based bifunctional organo-
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catalysts also received increasing attention.8 Primary amine cata-
lysis is effectively exploited by enzymes such as type I aldolases,
decarboxylases, and dehydratases, each of which contain catalyti-
cally active lysine or threonine residues.9 Considering the particu-
larities and potentials of primary amine-based organocatalysis, we
herein report that Noyori’s Ts-DPEN ligand with an amino sulfon-
amide moiety and a primary amino group on a chiral scaffold is
revealed to be highly efficient for the asymmetric Michael addition
of 1,3-dicarbonyl indane compounds to nitroolefins, which gave
highly functional Michael adduct with quaternary stereocenters
in good enantioselectivities.

Michael reaction of nitroolefins represents a direct and most
appealing approach to chiral nitroalkanes that are versatile inter-
mediates in organic synthesis, which is tied to their propensity
to undergo facile a-alkylation reaction and interconversions to
other important organic functional groups.10 Although the catalytic
asymmetric versions of this reactions were achieved, most re-
quired metal catalyst or strict reactions conditions,11 and the chiral
construction of a quaternary carbon atom via Michael addition is
rare.12 Recently, the utility of urea (thiourea)-based organocata-
lysts has been proved to be effective in the Michael addition of
ketones to nitroolefins, which is due to their strong activation of
carbonyl and nitro groups through efficient double-hydrogen-
bonding interactions.13 Notably, N-sulfonylcarboxamides, which
contain an acidic hydrogen with a pKa value similar to that of the
carboxyl acid group, also represent a novel fine-tuning class of
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Table 1
Michael reaction of nitrostyrene with various catalysts under different conditions

Entrya Cat. Solvent T (�C) Yieldb (%) dr (2R/2S)c ee % (major)d

1 Cat-1 Toluene �20 40 1.2:1 2
2 Cat-2 Toluene �20 67 1.0:1 20
3 Cat-3 Toluene �20 81 1.4:1 3
4 Cat-4 Toluene �20 80 1.9:1 11
5 Cat-5 Toluene �20 87 4.0:1 73
6 Cat-5 MeOH �20 93 1.2:1 4
7 Cat-5 THF �20 66 2.3:1 26
8 Cat-5 CH3CN �20 60 1.5:1 11
9 Cat-5 DCM �20 51 2.8:1 42

10 Cat-5 Toluene 20 81 4.0:1 65
11 Cat-5 Toluene 0 90 4.0:1 66
12 Cat-5 Toluene �78 50 2.3:1 59
13e Cat-5 Toluene �20 86 4.6:1 70

a Note: The reaction was performed with 1.0 mmol of nitrostyrene, 1.1 mmol of
cyclic b-ketoester (2a), 10 mol % of catalyst, for 24 h.

b GC yield.
c Determined by 1H NMR.
d The ee values of major products were determined by HPLC (see Supplementary

data).
e 5 mol % of Ts-DPEN.
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highly enantioselective organocatalysts for aldol and Michael addi-
tion;14 however, simple amino N-sulfonamides with weak single-
hydrogen-bonding interaction received little attractions. Up to
date, there are only a few literatures that reported the simple
organocatalyst bearing amino N-sulfonamides-catalyzed organic
transformations.15 Inspired by the proven ability of thiourea and
N-sulfonylamides with hydrogen-bonding functionality in the
asymmetric addition reactions, we envisioned that an appropriate
combination of N-sulfonamide and primary amine in a chiral scaf-
fold could result in a potential bifunctional organocatalyst. Herein,
we described the asymmetric organocatalytic Michael addition
containing tertiary stereocenters, which is promoted by a simple
bifunctional organocatalyst bearing an amino sulfonamide moiety
and with a primary amino group on a chiral scaffold.

There are few reports of Michael reaction of ketoesters to nitro-
olefins constructing a stereogenic quaternary carbon center with
high diastereo- and enantioselectivity.12 Therefore the Michael
reaction of nitrostyrene (1a) and a-substituted cyclic b-ketoester
(methyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate, 2a) was se-
lected as model reactions (Scheme 1). Initially, different commer-
cially available organocatalysts were examined, and the results
are summarized in Table 1. L-Proline and other chiral Lewis base,
including primary diamine, (R,R)-1,2-diphenylethylenediamine
(DPEN), showed low enantioselectivities and dr (Table 1, entries
1–4). We then synthesized a simple organocatalyst, Ts-DPEN, bear-
ing an amino sulfonamide moiety from (R,R)-1,2-diphenylethyl-
enediamine (DPEN), which could activate the nitrostyrene with
hydrogen-bonding interactions. It is known that the Ts-DPEN and
Noyori’s Ts-DPEN ligand, in combination with Ru(II)Cl(6g-arene),
exhibited high enantiofacial discrimination ability in hydrogena-
tion.16 However, to the best of our knowledge, no report is known
of Ts-DPEN-catalyzed organic reaction. Herein, to our surprise, as
shown in Table 1 (entry 5), the Noyori’s Ts-DPEN ligand showed
the best enantioselectivities (73% ee and 4:1 dr) compared to pre-
vious organocatalyst (cat-1 to cat-4). These results indicated that
N-sulfonamide is crucial for a high yield and selectivity. We then
carried out Michael reaction of nitrostyrene (1a) and cyclic b-keto-
ester (2a) in different solvent. Evaluation of usual reaction media
led to the further identification of toluene as the best solvent
(Table 1, entries 5–9). Further optimization of standard parameters
revealed that the reaction carried out at �20 �C in the presence of
5% to 10 mol % of the catalytic Ts-DPEN represents the best reactiv-
ity and enantioselectivity (Table 1, entries 10–13).

We next examined the scope of this class of Michael reactions
with a series of nitroolefins and cyclic b-ketoesters under the opti-
mized reaction conditions. Table 2 summarizes the results using
different substrates. The Michael reaction of different substituted
nitroolefins with methyl 1-oxo-2,3-dihydro-1H-indene-2-carbox-
ylate (2a) proceeded smoothly with good enantioselectivities
(Table 2, entries 1–9, 67–84% ee). In this way, it was revealed that
all the Michael adducts with various nitroolefins were obtained in
good yields and enantioselectivities. Furthermore, the Michael
reaction of various cyclic b-ketoesters and nitroolefins gave
corresponding adducts with good enantioselectivities and yields
(entries 10–15, up to 71% ee, up to 5.3 dr). The scope of the reaction



Table 2
Enantio- and diastereoselective Michael reactions of nitroolefins in the presence of catalytic Ts-DPEN
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Figure 1. Proposed catalytic reaction mode via dual activation model.

Table 2 (continued)

Entrya Nitroolefins Cyclic b-ketoesters Time (h) Yieldb (%) dr (2R/2S)c eed (%)

13

NO2

Cl

O

OMe

O 48 83 3.2:1 60

14

NO2

Cl

O

OMe

OMeO
48 85 5.3:1 70

15

NO2

Cl

O

OMe

O

Br

48 87 2.8:1 64

a The reaction was performed with 1.0 mmol of nitrostyrene, 1.1 mmol of cyclic b-ketoester 2a), 10 mol % of Ts-DPEN, in toluene (2 mL), at �20 �C.
b Isolated yield.
c Determined by 1H NMR.
d The ee values of major prodcuts were determined by HPLC (see Supplementary data), and the relative configuration was determined by comparing the retention time of

HPLC of products with that of the literature data.12e
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proved to be quite broad to give Michael adducts with quaternary
stereocenters in good enantioselectivities.

On the basis of the experimental results described above, the
reaction may proceed by the dual activation model,4,12e,17 the
two substrates involved in the reaction are activated simulta-
neously by Ts-DPEN as shown in Figure 1. The carbonyl group of
ketoesters is assumed to interact with primary amine moiety of
Ts-DPEN via multiple H-bonds, thus increasing the nucleophilic
ability of the reacting carbon center. The H-sulfonamide activated
nitroolefins via a single hydrogen bond enhanced the electrophilic-
ities of olefin.

In conclusion, Noyori’s Ts-DPEN ligand bearing an amino
sulfonamide moiety and with a primary amino group on a chiral
scaffold was first found to be a simple and efficient bifunctional
organocatalyst for the asymmetric Michael addition of 1,3-di-
carbonyl compounds to nitroolefins, which gave highly functional
Michael adduct with quaternary stereocenters in good enantio-
selectivities (up to 84% ee) and good dr (up to 5.7:1). This provides
a new strategy to give practical, synthetically useful, and highly
functionalized chiral substituted nitro compounds with quaternary
carbon center.
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